References for this website                  HOME

Barry Cooper, S. (2009). Emergence as a Computability-Theoretic Phenomenon. Applied Mathematics and Computation, Vol. 215, pp. 1351-1360 (2009).

Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider R., et al. (2012). Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187-189(08 March 2012) doi:10.1038/nature10872. Abstract

Bolognesi, T. (2010). Causal Sets from Simple Models of Computation. arXiv 1004(3128):1–33. arXiv:1004.3128.

Caspard, N.; Leclerc, B.; and Monjardet, B. (2012). Finite Ordered Sets. New York: Cambridge University Press.

Cuntz, H.,  Mathy A., and Häusser M. (June 2012).  A scaling law derived from optimal dendritic wiring. PNAS, 2012, DOI: 10.1073/pnas.1200430109. Full text PDF.

 deGrasse Tyson, N. (2011). How does the brain work? NOVA Science Now. Broadcast on PBS, hosted by astrophysicist Neil deGrasse Tyson.

Daunizeau, J., David, O., and Stephan, K. E. (2011). Dynamic causal modeling: A critical review of the biophysical and statistical foundations. NeuroImage 58 (2011) 312–322.

Demeyer, S. Van Rysselberghe, et al. The LAN simulation: a refactoring teaching example. (2005). 8th. Int. Workshop on Principles of Software Evolution, Lisbon, Vol. 1, pp. 123-134. Full text.

Dig, D., Manzoor, K., Johnson, R., and Nguyen, T. N. (2007). Refactoring-aware configuration management for object-oriented programs. Proc. 29th Int. Conference on Software Engineering, Minneapolis, pp. 427-436 (2007).

Eagleman, David. (2011) Incognito. The secret lives of the brain. Pantheon Books, New York.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews Neuroscience | AOP, p. 1-12, published online 13 January 2010; doi:101038/nrn2787, pp. 1-12. Full text.

Fuster, J. M. (2005). Cortex and Mind: Unifying Cognition. Oxford University Press, 2005.

Gell-Mann, M. (1995). The quark and the jaguar. Adventures in the simple and the complex. W. H. Freeman and Co. New York. Murray Gell-Mann has won the Nobel Prize in Physics for his discovery of quarks.

Hartonen, T. and Annila, A. (2012). Natural networks as thermodynamic systems. Complexity, Vol. 18(2), pp. 53-62, (Nov. 2012). DOI: 10.1002 / cplx.21428. Abstract. Full text.

Hawkins, J. (2004). On Intelligence. New york: Times Books.

Hofstadter, D. R. (1985). Metamagical Themas: Questing for the Essence of Mind and Pattern. New York: Basic Books, Inc.

Kauffman, S. (2011). Answering Descartes: Beyond Turing. In European Conference on Artificial Life (ECAL), 11–22.

Leijnen, S. (2011). Thinking Outside the Box: Creativity in Self-Programming Systems. Workshop on Self-Programming in AGI Systems. Fourth Conf. on Artificial General Intelligence. Mountain View, CA, 3-7 Aug. 2011. Full text is available.

Lerner, V. S. (August 2012). Hidden information and regularities of information dynamics III. arXiv:1208.3241v1 [nlin.AO]. Full text.

Lin, L.; Remus Osan; and Tsien, J. Z. (2006). Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes. Trends in Neuroscience 29(1):48–57. Full text.

Noether, E. (1918). Invariant Variation Problems. Nachr. d. König. Gesellsch. d. Wiss. zu Göttingen Math-phys 1918:235–257. English translation: arXiv:physics/0503066v1.

Opdyke, W. F. (1992). Refactoring Object-Oriented Frameworks. Ph.D. Dissertation, Dep. of Computer Science, Univ. of Illinois, Urbana-Champaign, Illinois, USA.

Pernu, T. K. and Annila, A. (2012). Natural Emergence. Complexity, 17(5):44-47. A video is available.

Perotti, J.I., Billoni, O.V., Tamarit, F. A., Chialvo, D. R., and Cannas, S. A. Emergent, self-organized complex network topology out of stability constraints. Phys. Rev. Lett., Vol. 103, 108701 (2009).

Pezzulo, G., Barsalou, L.W., Cangelosi, A., Fischer, M.A., McRae, K., and Spivey, M. (2011). The mechanics of embodiment: a dialog on embodiment and computational modeling. Frontiers in Cognition, 2(5), 1-21 (2011). Full text.

Pissanetzky, S. (1984). Sparse Matrix Technology. London: Academic Press.

Pissanetzky, S. (2007). A Relational Virtual Machine for Program Evolution. Proc. 2007 World Congress in Computer Science, Computer Engineering, and Applied Computing (WORLDCOMP'07) – 2007 International Conference on Software Evolution Research and Practice (SERP’07), June 25-28, 2007, Las Vegas, NV, USA. Vol. I, pp. 144-150 (2007). Abstract.

Pissanetzky, S. (2008a). A new type of Structured Artificial Neural Networks based on the Matrix Model of Computation. Proc. 2008 World Congress in Computer Science, Computer Engineering, and Applied Computing (WORLDCOMP'08) – 2008 International Conference on Artificial Intelligence (ICAI’08), July 14-17, 2008, Las Vegas, NV, USA. Vol. I, pp. 251-257 (2008). Abstract.

Pissanetzky, S. (2008b). If intelligence is the ability to solve unanticipated problems, then artificial intelligence needs universal representations. Workshop on Automation and Robotics, NASA Gilruth Center, Johnson Space Center, Clear Lake, TX.

Pissanetzky, S. (2009a). A new Universal Model of Computation and its Contribution to Learning, Intelligence, Parallelism, Ontologies, Refactoring, and the Sharing of Resources. Int. J. of Information and Mathematical Sciences 5:143–173. Please note that "International Journal of Information and Mathematical Sciences" (IJIMS) is the new name of "International Journal of Computational Intelligence" (IJCI). Full text.

Pissanetzky, S. (2009b). The new theory of objects and the automatic generation of intelligent agents. Workshop on Automation and Robotics, NASA Gilruth Center, Johnson Space Center, Clear Lake, TX.

Pissanetzky, S. (2010a). Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain. World Academy of Science, Engineering, and Technology 44: 1–9 (2010). Full text.

Pissanetzky, S. (2010b). Adaptive systems and analyst-independent technologies. Workshop on Automation and Robotics, NASA Gilruth Center, Johnson Space Center, Clear Lake, TX. Abstract.

Pissanetzky, S. (2011a). Emergence and Self-organization in Partially Ordered Sets. Complexity 17(2): 19–38. Abstract. Full text. Note: the partially ordered sets mentioned in the title are actually causal sets.

Pissanetzky, S. (2011b). Emergent inference and the future of NASA. Workshop on Automation and Robotics, NASA Gilruth Center, Johnson Space Center, Clear Lake, TX. Abstract.

Pissanetzky, S. (2011c). Structural Emergence in Partially Ordered Sets is the Key to Intelligence. In Artificial General Intelligence, 92–101. Full text.

Pissanetzky, S. (2011d). Emergent inference, or how can a program become a self-programming AGI system? Workshop on Self-programming in AGI systems. AGI-11 conference, Google Headquarters, Mountain View, CA. August 3-6, 2011. Full text PDF, slides and slide notes are available.

Pissanetzky, S. (2012). Symmetry, structure, and causets in discrete quantum gravity. Bulletin of the American Physical Society 57(2):H1.0005. Abstract

Pissanetzky, S. (2012b). Reasoning with Computer Code: a new Mathematical Logic, Special issue on Self-Programming, K. R. Thórisson, E. Nivel & R. Sanz (eds.), Journal of Artificial General Intelligence (JAGI), Special Issue on Self-programming, Vol. 3, issue 3, pages 11-42,  December 2012. DOI: 10.2478/v10229-011-0020-6. Abstract. Full text (open access).

Pissanetzky, S. A series of talks presented by the author at the Workshop on Automation and Robotics, organized by American Institute of Aeronautics and Astronautics, Houston Section Technical Committee, and IEEE Galveston bay section, at the NASA Gilruth Center, Johnson Space Center, Houston, Texas. Years 2008, 2009, 2010, 2011.

Pissanetzky, S. Causality, Symmetry, Brain, Evolution, DNA, and a new Theory of Physics. Bulletin of the American Physical Society, Vol. 57, number 10 (October 2012). Abstract.

Pissanetzky, S. The Unification of Symmetry and Conservation. Bulletin of the American Physical Society, Vol. 58, Number  3 (April 2013). Abstract. Slides (pptx). Slide Notes.

Oral presentation at the Texas Section of the American Physical Society. April 4-6 (2013), Stephenville, Texas. N2.00001. Abstract. Slides (pptx). Slide Notes.

Prokopenko, M., Boschetti, F., and Ryan, A. R. (2009). An information-theoretic primer on complexity, self-organization, and emergence. Complexity, 15: 11-28.

Ramachandran, V. S. (2011) The Tell-Tale Brain. W. W. Norton & Co. New York.

Russell, S., and Norvig, P. (2010). Artificial Intelligence. A Modern Approach. Third Edition. Prentice Hall Series in Artificial Intelligence, New Jersey, USA.

Schröder, B. S. W. (2002). Ordered sets. Boston, USA: Birkhäuser. Shafer, G. 1998. CausalLogic. Full text.

Solomonoff, R. J. (2010). Algorithmic Probability, Heuristic Programming and AGI. In Artificial General Intelligence, 251–257.

Sommer, Hanns, and Schreiber, Lothar (May 2012). Is Logic in the Mind or in the World? Why a Philosophical Question can Affect the Understanding of Intelligence. Journal of Artificial General Intelligence (JAGI). Volume 1, Issue 1, Pages 25–47, ISSN (Online) 1946-0163, ISSN (Print) , DOI: 10.2478/v10229-011-0014-4. Published online May 17, 2012. Abstract and full text.

Sorkin, R. (2006). Geometry from order: causal sets. Einstein Online Vol. 2, (2006), 1007. Full text.

Still, S., Sivak, D. A., Bell, A. J., and Crooks, G. E. (2012). Thermodynamics of Prediction. Phys. Rev. Letters, 109, 120604 (September 19, 2012). Full text. Preprint available from arXiv:1203.3271v2, 5 July 2012.

Storrs Hall, J. (2011). Self-Programming through Imitation. Workshop on Self-Programming in AGI Systems. Fourth Conf. on Artificial General Intelligence. Mountain View, CA, 3-7 Aug. 2011. Full text is available.

Wedeen, V. J.; Rosene, D. L.; Wang, R.; Dai, G.; Mortazavi, F.; Hagmann, P.; Kaas, J. H.; and Tseng, W. I. (2012). The geometric structure of the brain fiber pathways. Science DOI:  10.1126/science.1215280:1628–1634. Abstract. See also: Article 1, Article 2.

Wissner-Gross, A. D. and Freer C. E. Causal Entropic Forces. Physical Review Letters, 110, 168702 (2013). Full text.