VECTORS
MATRICES
AND C++ CODE

‘Professionally typeset

Basic level.

Hundreds of live crossreferences

Live Index

Live Table of Contents

Live Bibliography

Live Internet links

Live C+-+ code documentation
‘Professional C++ code included
New to C++7? C4++ Course included

Sergio Pissanetzky

Vectors, Matrices, and C++ Code

Sergio Pissanetzky

2004

Copyright (©) 2004 by Sergio Pissanetzky. All rights reserved. No part of the contents of this
book can be reproduced without the written permission of the publisher.

Professionally typeset by IXTEX

Dr. Pissanetzky retired after a rewarding career as an Entrepreneur, Professor, Research Scientist
and Consultant. He was the founder of Magnus Software Corporation, where he focused on develop-
ment of specialized applications for the Magnetic Resonance Imaging (MRI) and the High Energy
Particle Accelerator industries. He has served as Member of the International Editorial Board of
the “International Journal for Computation in Electrical and Electronic Engineering”, as a Member
of the International Advisory Committee of the International Journal “Métodos Numéricos para
Célculo y Disefio en Ingenieria”, and as a member of the International Committee for Nuclear
Resonance Spectroscopy, Tokyo, Japan. Dr. Pissanetzky has held professorships in Physics at
Texas A&M University and the Universities of Buenos Aires, Cérdoba and Cuyo, Argentina. He
has also held positions as a Research Scientist with the Houston Advanced Research Center, as
Chairman of the Computer Center of the Atomic Energy Commission, San Carlos de Bariloche,
Argentina, and as a Scientific Consultant at Brookhaven National Laboratory. Dr. Pissanetzky is
currently a member of the Advisory Board of Meedio, LLC. Dr. Pissanetzky holds several US and
European patents and is the author of two books and numerous peer reviewed technical papers.
Dr.Pissanetzky earned his Ph.D. in Physics at the Balseiro Institute, Univesity of Cuyo, in 1965.
Dr. Pissanetzky has 35 years of teaching experience and 30 years of programming experience in
languages such as Fortran, Basic, C and C++. Dr. Pissanetzky now lives in a quite suburban
neighborhood in Texas.

Website: http://www.SciControls.com

Trademark Notices

Microsoft®, Windows® and Visual C++® are registered trademarks of Microsoft Corporation.
Java™ and Sun™ are trademarks of Sun Microsystems, Inc.

UNIX® is a registered trade mark licensed through X/Open Company, Ltd.

PostScript®, PDF® and Acrobat Reader® are registered trademarks of Adobe Systems, Inc.
Merriam-Webster "Mis a trademark of Merriam-Webster, Inc.

VAX™js a trademark of Digital Equipment Corporation.

Other product and company names mentioned herein may be the trademarks of their respective
owners.

ISBN 0-00-000000-0

http://www.meedio.com/
http://www.SciControls.com

v
Preface

Presented here is an integrated approach - perhaps the first in its class - of the basics of vector
and matrix Algebra with the object-oriented C++ code that implements the vectors and matrix
objects and brings them to life. This is not the traditional road map followed by textbooks, and a
rationale is needed.

The concept of object has existed in Science for centuries. An object associates properties and
behavior in a single, inseparable entity, an abstraction consisting of properties and a description
of their behavior. Although the term object is not used in Science, scientists always did all their
thinking in terms of objects. In Physics, a rigid body, an atom, an electromagnetic wave, are all
objects, because they all have properties and behavior. The laws of Physics describe their behavior
in terms of their properties. Similarly, in Mathematics, a vector, a graph, even a number, all have
properties and behavior and are therefore objects.

As a matter of fact, thinking in terms of objects is the natural way of thinking, perhaps the only
way of thinking, and we all practice it every day. A piece of paper is an object, it has color, size,
weight, shape. It can be printed upon, it can absorb water, it can burn, it can be folded or torn
and hold its new shape. A bank account is an object, it has a balance and rules that govern how
funds can be deposited, withdrawn or transferred, and how interest is earned. Man knew objects
for as long as humanity existed, primitive objects such as food or shelter, and more technological
objects such as fire or the wheel.

More recently, the concept of object was introduced in Computation, and object-oriented lan-
guages were created. A computational object is a model of the real object, an abstraction. So also
are our thoughts. In either case, creating the object is difficult because the concept of modeling
or abstracting the real world is involved. Among the new languages, C++ became very popular,
and is our choice because it offers full and efficient support for all the mathematical calculations
we need, and it is entirely built around object-oriented concepts.

Yet, the concept of object is not routinely used when teaching Science, frequently not even
mentioned. And the idea that objects can come alive in a computer remains relegated to specialized
areas of Computer Science and has not been fully exploited.

As a result, the world of disciplines is divided into the world of science and the world of
code. Books on science are written by scientists who may not be very used to coding, software
documentation and books on coding are written by developers and computer scientists who may
not be very interested in Mathematics or Physics. And books on Computational Physics tend to
concentrate on the specialized mathematical methods used to solve the problems but offer at best a
background of the mathematical and physical concepts and little or nothing about the code. Many
simply refer the reader to a commercial implementation of the methods, thus neatly separating the
two worlds.

Where is the scientist who has never felt the need to calculate some numbers in support of
his/her research? Where is the developer who has never felt the need for science when writing code?
Where is the user who has never been confused with code documentation written by someone not

very familiar with a right-handed coordinate system or a 0-based array index?

This book is intended to provide an integrated approach to basic vector and matrix Algebra with
object-oriented concepts and the actual code implementing them. The source code is included and
readers are free to use it for their own work provided proper credit is always given. Coding is about
empowerment, and we want to empower the reader with the ability to create his/her own live objects
and cause them to act their parts. This is the first volume of what we expect to be a series covering,
approximately, the following topics of Mathematics and Physics: Coordinate Transformations,
Graphs, Sparse Matrices [3], Linear Equations, the Dynamics of Multibody Systems, and the
intelligent control of Articulated Multibody Robotic Structures. Other titles may be added as
needed. All of them, of course, with the corresponding source code included.

This product is both a textbook and a software release. The book can be regarded as very
complete software documentation, consisting not only of the description of classes, attributes and
methods, but also of the mathematical background that supports the code. Just as business code
is best understood by those with a background in that business, scientific code is best understood
by those with a background in mathematics.

The code presented here is in no way new. Its roots date back more than 30 years. It evolved
from its original non-object-oriented Fortran versions to its current fully object-oriented versions
in C++. It grew as it evolved, becoming part of several well known professional scientific programs
such as Kubik [5], Magnus [6], Epilog [7], PhysicSolver [9], and others, and it served engineering
applications such as the design of Particle Accelerators, Magnetic Resonance Imaging systems,
thermal systems for nuclear reactors, and many others, and the teaching of Science.

To understand this book you will need a basic knowledge of Mathematical notation, Algebra
and Trigonometry. If you are not familiar with C4++ or object-oriented methodology, you can
learn it right here, because a basic course on C++ and computational objects is included. It is
not a regular course, because as you learn you can refer directly to the included professional code,
something not usually available in a traditional course. If you are not interested in learning vectors
and matrices but only in using the code, you can still do so. The code documentation has links
to the underlying mathematical concepts, or it can be understood even if you ignore them. We
do encourage you to check the concepts, however, you can learn some Mathematics in the process.
You should read this book if:

e You are a developer and you need a background in vector or matrix algebra.
e You are a science student and you need to learn C++.

e You are a scientist or a science student and you need to write advanced code but you don’t
want to waste time developing the basics.

e You need ready-to-use C++ source code for your science project.

We could have released our material as html web pages to the Internet, but we have chosen to
present it in pdf format and in the form of an electronic book, an eBook. Web pages are sometimes

vi

disconcerting, and the navigational adventure may be chaotic because the emphasis in light, color
and motion creates confusion. One can write a whole encyclopedia in web pages and nobody will
ever realize the magnitude or comprehend the extent or content of the work. Concepts are scattered
and difficult to relate to each other, or even to find.

EBooks, instead, offer unity and integrity of content. The reader travels between boundaries
with a clear notion of content, quality and organization of the information. Modern eBooks have
all the live cross references and internal and external links that one finds in web pages. EBooks are
free from advertising, and they can talk. EBooks are sturdy, pages never wear out or get loose. Our
eBook has a live table of contents, a live index, live bibliography, live references, live comments,
and external links to the Internet.

There are currently thousands of eBooks covering many areas of human knowledge or enter-
tainment. In a sense, eBooks are changing the very art of technical book writing. Using links and
cross references, it has now become possible to include advanced and even encyclopedic content
without disturbing the natural flow of the subject, something not found in paper textbooks, and
something authors are not yet accustomed to. EBooks are even ideal to be used as a reference for
the subject matter because of the many live internal links.

If you are reading this, you are probably using the Adobe Reader. Just a couple of suggestions
you may find useful. Run the reader by itself, not inside a browser, to maximize the amount of
screen area available to you. Magnify as much as you can to improve readability. But try to see a
whole page on the screen, even if a piece of the Reader is outside the screen. You can use the left
and right arrows in your keyboard to change pages. Internal links will also bring you to another
page, and you can return to where you were using alt-left arrow, even repetitively. Ctlr-2 sets
fit-to-page and lets you adjust the magnification by dragging the edge of the window until the
height of the page is as tall as fits in the window. Also ctrl-m is very useful, it lets you type-in
the magnification you want. There are other good pdf readers as well, for example GSview from
Ghostscirpt.

Please drop us a line when you feel like it, just make sure your e-mail is clearly identified so
it doesn’t get confused with spam. We will try to respond via frequently asked questions in our
web site, so please read that material before you write. Please consider that we are a few, you are
many. Enjoy!

Sergio Pissanetzky
October 2004

http://www.cs.wisc.edu/~ghost/

Contents

1 Introduction

1.1 Objectives and Road Map
1.2 Code Design Considerations 0 it
1.2.1 Object Oriented Programming
1.2.2 Code. e
1.2.3 Style . . . L e
1.24 Efficiencyo
1.2.5 Operators e e

2 Scalars and Vectors

2.1 Basics . . .o . e e
2.2 The graphic representation of vectors L oL
2.3 Operations with vectors e
2.4 Unit vectors e e e e e e e e
2.5 Components e
2.6 Vector operations using componentso e e e
2.7 Dot product L
2.8 Cross product
2.9 Multidimensional vectors
2.10 Row vectors and column vectors L Lo

3 Matrices

3.1 Basics e e e e e e e
3.2 Operations with matrices e
3.3 Specialized matrices
3.4 Vectors as matrices L e e e e e e e e e e e

4 Basic C++ Programming
4.1 Introduction e
4.2 CH-+ Essentials o s

Vil

21
21
22
24
26

viii CONTENTS

4.2.1 Writing Classes o . 31
4.2.2 Names and Types o 32
4.2.3 Operators e 33
4.2.4 Constructors and Destructors, 35
4.2.5 Pointers and References L oo 36
4.2.6 Functions e e e e 38
4.2.7 Visibilityo e 40
4.2.8 ATTAYS e 40
4.2.9 Pointer Arithmetic 42
4.2.10 Compound Statements 43

4.3 Polymorphism in C+4 L 48
4.3.1 Familiesof classes 48
4.3.2 Virtual Functions e 50
4.3.3 Constant Objects, Functions and Pointers 52
4.3.4 Overloading Functions L L 53
4.3.5 Creating and Using Objects, 53
4.3.6 Operators new and delete, 54
4.3.7 Separating Declarations and Definitions 55
4.3.8 Parameterized Classes e 59

4.4 Conclusion e 62
5 Vector and Matrix Code 63
5.1 The Families of Classes i e 63
5.2 Equations, Algorithms and Programs 63
5.3 Method Design and Naming Style. o oL 64
54 All Families e 66
5.5 AL Classes e 67
6 The Vector Family of Classes 69
6.1 All Vector Classes o i e e 69
6.2 Class PVector e 69
6.2.1 PVector Attribute Detail 73
6.2.2 PVector Constructor Detail 74
6.2.3 PVector Method Detail 75

6.3 Class Vector2 e e e 82
6.3.1 Vector2 Constructor Detail 87
6.3.2 Vector2 Method Detail, 88

6.4 Class Vector3 e e e e 98
6.4.1 Vector3 Constructor Detail 103

6.4.2 Vector3 Method Detail 104

CONTENTS

6.5

6.6

7 The
7.1
7.2

7.3

7.4

7.5

8 The
8.1
8.2

8.3

8.4

8.5

8.6

Class UnitVector3 e
6.5.1 UnitVector3 Constructor Detail
6.5.2 UnitVector3d Method Detail
Class VectorN e
6.6.1 VectorN Constructor Detail
6.6.2 VectorN Method Detail

Matrix Family of Classes

All Matrix Classes o e
Class PMatrix e e e
7.2.1 PMatrix Attribute Detail
7.2.2 PMatrix Constructor Detail,
7.2.3 PMatrix Method Detail
Class Matrix e e e e
7.3.1 Matrix Constructor Detail
7.3.2 Matrix Method Detail
Class Matrix3 e e e
7.4.1 Matrix3 Constructor Detail
7.4.2 Matrix3 Method Detail,
Class Matrix3X4 e e
7.5.1 Matrix3X4 Constructor Detail
7.5.2 Matrix3X4 Method Detail

Array Family of Classes

All Array Classes o o o e
Class PArray
8.2.1 PArray Attribute Detailo
8.2.2 PArray Constructor Detail
8.2.3 PArray Method Detail
Class ArrayOfCStr oL
8.3.1 ArrayOfCStr Constructor Detail
8.3.2 ArrayOfCStr Method Detail
Class ArrayOfDoubles o
8.4.1 ArrayOfDoubles Constructor Detail
8.4.2 ArrayOfDoubles Method Detail
Class ArrayOflntegers o o
8.5.1 ArrayOfIntegers Constructor Detail
8.5.2 ArrayOflntegers Method Detail
Class ArrayOfStr o L e
8.6.1 ArrayOfStr Constructor Detail

1X

118
122
123
124
127
128

131
131
131
135
135
136
145
150
151
165
171
172
190
193
193

S CONTENTS

8.6.2 ArrayOfStr Method Detail 241

9 The String Family of Classes 243
9.1 All String Classes o 243
9.2 Class CStr 243
9.2.1 CStr Attribute Detail 250

9.2.2 CStr Constructor Detail 250

9.2.3 CStr Method Detail 252

9.3 Class Str. e e e 279
9.3.1 Str Attribute Detail 288

9.3.2 Str Constructor Detail 288

9.3.3 Str Method Detail 292

9.4 Class Formatter e 330
9.4.1 Formatter Attribute Detail 332

9.4.2 Formatter Constructor Detail 333

9.4.3 Formatter Method Detail 333

A Terms, Conventions and Definitions 335
A1 Terminology 335
A.2 Cabinet Drawing e 336
A.3 Coordinate Systems 337
A.4 Right-handed and left-handed systems 338

A.5 Coordinate transformations 339

2.8. CROSS PRODUCT 17
Now let a and b be two given vectors, which we can express in components as was done in equation
2.7. The dot product is given by:

a-b=(a;it+ayj+a k) (bpi+byj+b.k) (2.20)

Using the associative property to expand this, and using equations 2.19 to calculate the values of
several resulting dot products, we obtain:

a-b=ayb; +ayb, +a.b. (2.21)

Equation 2.21 tells us how to calculate the dot product between two vectors directly from their
components. The dot product of a vector by itself is the square of its magnitude.

2.8 Cross product

The cross product, also known as the vector product, of two given vectors a and b, is represented
as a X b, and is defined as another vector c:

c=axb (2.22)

axb

C =

Figure 2.10: The cross product.

Vector c is perpendicular to the plane determined by vectors a and b, its direction is determined
in such a way that the three vectors a, b and c form a right-handed system, and its magnitude
is the product of the magnitude of a, the magnitude of b, and the sine of the angle between the
positive directions of a and b:

c=ab sin(a) (2.23)

where « is the angle between a and b. Figure 2.10 illustrates an example. If a and b are parallel
or antiparallel, the result of the vector product is the zero vector. This is because o = 0 or a = ,
respectively, and sina = 0 in both cases. If a and b are not parallel, then their directions do in

3.2. OPERATIONS WITH MATRICES 23

and the elements of C are those of A multiplied by s:

Cij = sAyj (3.8)
for all ¢ and j. The matrix and the number commute:

sA = As (3.9)

The operation of multiplication can be defined for two matrices of any size or shape, provided they
conform to each other in the order they are given. Two matrices A and B are said to conform in
that order if the number of columns of A is equal to the number of rows of B. Let A be a p X ¢
matrix, and let B be a ¢ x r matrix. Then matrix C is the product of A and B

cC = A B

(3.10)
P Xr P X q q xXr
if C is of order p x r and its elements are calculated as follows:
q
Cik =Y _ AijBji (3.11)

J=1

for all i and all k. At this point it is important to explain the mechanics of these equations. In 3.10,
we have indicated the sizes of the matrices. On the right-hand side, the adjacent size parameters of
the two pairs (p X q), (¢ X) both have the same value, q. Upon effecting the product, the repeated
parameter g disappears, leaving only the pair p x r on the left-hand side. This mnemonic is very
useful.

We now examine equation 3.11, which is actually a set of pr equations, one for each value of 4
and one for each value of k. Consider one of the equations in the set, where ¢ has a certain value
and k has a certain value. The summation index on the right-hand side if j, while ¢ and k remain
constant and with the same values they have on the left-hand side. This means that the entire row
i of A, and the entire column £ of B are involved in the summation, and all this just for the single
element ,j of C. If we think of row ¢ of A as a vector with ¢ components, and the column k of
B as another vector also with ¢ components, then the calculations implied in 3.11 are the same as
in equation 2.30, which describes the dot product of two multidimensional vectors. In summary:
element C;; of matrix C is calculated as the dot product or row ¢ of A and columnt k of matrix
B. This is, again, a very useful mnemonic.

Matrix multiplication can be extended to the case of multiple factors. For example:

D = A B C

(3.12)
D XS PXq gXr rxs

where the sizes of the matrices are indicated underneath their names, the product is done by first
multiplying A and B, and then multiplying the result by C. Note that all adjacent pairs of factors

Chapter 4

Basic C++4 Programming

Only experience can make you a good C++ developer. This course will give you the knowledge
you need to understand the basics of C++ programming and to begin working with C++ code.
C++ is a language, a language that compilers understand, and it requires practice just like any
other language.

This course is exceptional in at least one respect. Normally, a C4++ course explains the concepts,
provides some examples and perhaps some exercises, and leaves the reader right there, without much
access to professional code. In this case, however, we have taken advantage of the fact that the
professional Vector and Matrix code is part of the eBook. The student is taken seamlessly from
the basic concepts explained in the course, to the actual code. The code is extensively documented
and cross-references between course material and code are provided. Students are given a unique
chance to practice and develop their skills quickly to a level that only developers with years of
experience can achieve.

Still, none of this is a substitute for the actual experience of developing code.

If you are an experienced C++ developer, you can skip this entire chapter and go directly to
the professional code presented in the following chapters. But if you are not familiar with C++,
you must peruse this material first.

4.1 Introduction

C++ programming is done in terms of objects. An object associates properties and behavior in a
single, inseparable entity, a computational abstraction consisting of data and a description of the
behavior of that data. Similar objects are grouped into classes, and a particular object is said to
be an instance of its class.

Objects have been used in Science for centuries. In Physics, a solid body, an atom, an electro-
magnetic wave, are all objects, because they all have properties and behavior. The laws of Physics
describe their behavior in terms of their properties. Similarly, in Mathematics, a vector, a matrix,

29

5.5. ALL CLASSES

5.5 All Classes

Class name

Description

An array of variable length that can hold pointers to objects of type CStr.

ArrayOfCStr The array of pointers is owned by the class and is deleted in the destructor.
The objects, however, are not.

ArrayOfDoubles | An array of variable length that can hold doubles.

ArrayOflntegers | An array of variable length that can hold integers.
An array of variable length that can hold pointers to objects of type Str.

ArrayOfStr The array of pointers is owned by the class and is deleted in the destructor.
The objects, however, are not.

CStr A class defining a substring that is part of a larger NULL-terminated string
or an Str object.

Formatter A class that supports printf -style formatting for Str and CStr objects.

Matrix A general rectangular matrix.

Matrix3 A square matrix of numbers of order 3 x 3.

Matrix3X4 A rectangular matrix of numbers of order 3 x 4.
A parameterized class used as base for all Array classes. It has an array of

PArray Var.iable l‘ength that can hold pointcers to obj‘ects of any type. The arr‘ay of
pointers is owned by the class and is deleted in the destructor. The objects,
however, are not.

. The abstract class used as base for all Matrix classes. It describes a general

PMatrix .
rectangular matrix of numbers.
The base class for all Vector classes. It describes a vector in a space with

PVector . .
any number of dimensions.

Str A NULL-terminated array of characters. It is owned by the class and
deleted by the destructor when the object is destructed.

UnitVector3 A unit vector in a three-dimensional space.

Vector2 A vector in a two-dimensional space.

Vector3 A vector in a three-dimensional space.

VectorN A vector in a space with any number of dimensions.

67

6.2. CLASS PVECTOR

71

Method Summary

public: Create(int nComps)

virtual void Creates a PVector object with the specified number of components.
public: Create(int nComps, const double * comps)

virtual void Creates a PVector object with the specified components.

public: DotProduct(const PVector & other)

virtual double Calculates the dot product of this vector and another given vector.
public: FindLargestComponent/()

virtual int Returns the index of the component with the largest absolute value.
public: FindSmallestComponent()

virtual int Returns the index of the component with the smallest absolute value.
public: GetComponent (int index)

inline const double & Returns the value of a component of this vector.

public: GetComponents()

inline const double * Returns a pointer to the the components array of constant doubles.
public: GetCopyOfComponents(double * copy)

void Returns by argument copies of the components of this vector in an array.
public: GetMyLength()

virtual double Returns the length or magnitude of this vector.

public: GetMyLengthSquared()

virtual double Returns the square of the length or magnitude of this vector.
public: GetNonconstantComponents()

inline double * Returns a pointer to the components array.

public: GetNumberComponents()

inline int Returns the number of components of this PVector object.

public: IsZero()

virtual bool Returns true if this vector is zero, false otherwise.

public: MakeMeZero()

virtual void Sets this vector to the zero vector.

public: MeEqualsDifferenceBetween(const PVector & a, const PVector & b)
virtual void Sets this vector equal to the difference between two given vectors.
public: MeEqualsMeMinus(const PVector & other)

virtual void Subtracts a given vector from this vector.

public: MeEqualsMePlus(const PVector & other)

virtual void Adds a given vector to this vector.

public: MeEqualsMeTimesConstant(double f)

virtual void Multiplies this vector by a constant.

public: MeEqualsMeTimesDiagonalMatrix(const double * diag)

virtual void Left-multiplies this vector by a given diagonal matrix.

public: MeEqualsMinusMe()

virtual void

Changes the sign of this vector.

74 CHAPTER 6. THE VECTOR FAMILY OF CLASSES

6.2.2 PVector Constructor Detail

public: PVector::PVector(int nComps, const double * comps)

Components constructor. It sets m_nComponents to nComps , invokes operator new to create array
components of size m nComponents , and copies m_nComponents values from the given array
comps into array components .

Arguments
e nComps Number of components.
e comps A pointer to a constant array of doubles that contains the values for the compo-
nents.

public: PVector::PVector(const PVector & other)

Copy constructor. It sets this vector identical to the given vector by copying the value of
m_nComponents and all element values from other to this object.
Arguments

e other The given PVector object.

public: PVector::PVector(int nComps)

Size constructor. It sets m nComponents to nComps and invokes operator new to create array
components of size m_nComponents , but leaves the elements of the array uninitialized.
Arguments

e nComps Number of components.

public: PVector::PVector()

Default constructor. It sets components to NULL .

public: virtual PVector::~PVector()

The virtual destructor. It deletes the array pointed at by components if this pointer is not NULL.

120 CHAPTER 6. THE VECTOR FAMILY OF CLASSES

Inherited from Vector3

protected: int m_nComponents;

protected: double * components;

public: double Angle(const Vector3 & q);

public: double AngleDirected(const Vector3 & ¢, const Vector3 & m);
public: bool Create(const CStr & text);

public: bool Create(const Str & text);

public: bool Create(double x, double y, double z);

public: virtual void Create(int nComps);

public: virtual void Create(int nComps, const double * comps);
public: Vectord CrossVector(const Vector3 & uu);

public: virtual double DotProduct(const PVector & other)const;
public: double DotVector(const Vector3 & uu);

public: Vector3 DoubleCrossVector(const Vector3 & uu);

public: int FindLargestComponent();

public: int FindSmallestComponent();

public: Vector3 GenerateArbitraryNormal();

public: double GetComponent(int index);

public: void GetComponents(double &ux, double &uy, double &uz);
public: void GetComponents(double * array);

public: inline const double * GetComponents();

public: void GetCopyOfComponents(double * copy)const;

public: double GetMyLength();

public: double GetMyLengthSquared();

public: Vector3 GetMyPNormal(const Vector3 & w);

public: Vector3d GetMyUnit();

public: bool GetMyUnit(Vector3 & unit);

public: inline double * GetNonconstantComponents();

public: inline int GetNumberComponents();

public: Matrix3 GetWMatrix();

public: bool IsZero();

public: double MakeMeUnit();

public: void MakeMeZero();

public: void MeEqualsDifferenceBetween(const Vector3 & a, const Vector3 & b);
public: virtual void MeEqualsDifferenceBetween(const PVector & a, const PVector & b);
public: virtual void MeEqualsMeMinus(const PVector & other);
public: virtual void MeEqualsMePlus(const PVector & other);

public: virtual void MeEqualsMeTimesConstant(double f);

public: virtual void MeEqualsMinusMeMinus(const PVector & other);

Chapter 8

The Array Family of Classes

8.1 All Array Classes

Class name

Description

An array of variable length that can hold pointers to objects of type CStr.

ArrayOfCStr The array of pointers is owned by the class and is deleted in the destructor.
The objects, however, are not.
ArrayOfDoubles | An array of variable length that can hold doubles.
ArrayOflntegers | An array of variable length that can hold integers.
An array of variable length that can hold pointers to objects of type Str.
ArrayOfStr The array of pointers is owned by the class and is deleted in the destructor.
The objects, however, are not.
A parameterized class used as base for all Array classes. It has an array of
PArray variable length that can hold pointers to objects of any type. The array of

pointers is owned by the class and is deleted in the destructor. The objects,
however, are not.

8.2 Class PArray

A parameterized (template) container class representing an array of variable length containing
objects or pointers to objects of any type.
constructor is used to initialize the items in the array, and therefore the existence of a default
constructor is required for such types. The class offers support for all standard array operations,
including inserting, appending or prepending items or other arrays, sorting, and removing and
extracting items or arrays. The single type parameter is called TYPE . The class can be used to

declare arrays directly, for example:

197

For types other than primitive types, the default

Index

Algorithm, 63 Attributes, 31
Antisymmetric matrix, 24
Argument Band matrix, 25
return, 39 Behavior, 31
Arguments Block matrix, 25
formal, 38 BSTR, 283, 285, 286, 309, 315, 317, 320
Array

C++
essentials, 31
programming, 29
Cabinet
drawing, 336
representation, 336

classes, 197

family of classes, 197
of characters, 41, 238
of doubles, 213

of integers, 226

ArrayOfCStr Cartesian coordinate system, 337
class, 210 Case label, 47
constructor details, 211 char, 41
method details, 212 Character array, 41
ArrayOfDoubles NULL terminated, 41
class, 213 Character codes, 41
constructor details, 217 Circular inclusions
method details, 219 preventing, 58
ArrayOfIntegers Class, 31
class, 226 derived, 31
constructor details, 230 instance, 31
method details, 232 members, 31
ArrayOfStr prototype, 56
class, 238 root, 50
constructor details, 240 templates, 59
method details, 241 Class ArrayOfCStr
Arrays, 40 AppendCStrIfNotThere, 212
ASCII ArrayOfCStr, 211
character codes, 41 ~ArrayOfCStr, 212
character set, 41 FindCStr, 212

342

INDEX

Class ArrayOfCStr (cntd)
constructor details, 211
method details, 212

Class ArrayOfDoubles
AddArray, 219
AppendElement, 219
AppendElementIfNotThere, 220
ArrayOfDoubles, 217, 218
~ArrayOfDoubles, 218
ChangeSign, 220
CopyArray, 220
CopyMinusArray, 220
DotProduct, 221
FillWithConstant, 221
FindElement, 221
GetLengthSquared, 221
IsZero, 221
MakeMeZero, 222
MultiplyByConstant, 222
operator*, 222
operator*=, 222
operator+, 223
operator+=, 223
operator-, 223
operator-=, 224
operator/, 224
operator/=, 224
operator=, 225
operator const double *, 219
ReportHorizontal, 225
ReportVertical, 226
SubtractArray, 226

Class ArrayOfIntegers
AddArray, 232
AppendElement, 232
AppendElementIfNotThere, 233
ArrayOflIntegers, 230, 231
~ArrayOflntegers, 231
ChangeSign, 233
CopyArray, 233

CopyMinusArray, 233
FindElement, 234
InitializeWithConstant, 234
Initialize WithSequence, 234
IsZero, 234
MakeMeZero, 234
operator+, 235
operator+=, 235
operator-, 235
operator-=, 236
operator=, 236
operator const int *, 232
ReportHorizontal, 236
ReportVertical, 237
SortMe, 237
Subtract Array, 237

Class ArrayOfStr
AppendStr, 241
AppendStrlfNotThere, 241
ArrayOfStr, 240
~ArrayOfStr, 240
FindStr, 241
operator=, 242

Class CStr
AtoF, 252
Atol, 252
Compare, 253
ConvertMeToNumber, 254
CountBracketedGroups, 254
CountLines, 255
CountNonemptyLines, 255
CountNonempty Words, 255
CountOccurrences, 255
Create, 256
CStr, 250, 251
~CStr, 251
Find, 256, 257
FindChar, 257
FindExclusive, 258
FindMatchingBracket, 258

344

Class CStr (cntd)

FindMatchingBracketExclusive, 259
FindNextCommand, 260
FindNextCommandExclusive, 261
FindNextNonalnumDelimitedWord, 261
FindNextSpaceDelimited Word, 262
FindNthCommandWithTitle, 262
FindNthCommandWithTitleExclusive, 263
FindNthLineStartingWithWord, 263

FindPreviousNonalnumDelimited Word, 264

FindPreviousSpaceDelimited Word, 264
FindTextBetween, 265

GetAt, 266

GetMainString, 266
GetNumberCharacters, 266
GetOffset, 266
GetOffsetPastEnd, 266
GetRangeString, 267
GetTextBetweenBrackets, 267
GetTextBetweenBracketsExclusive, 268
isAlnum, 268

isAlpha, 268

isDigit, 269

IsEmpty, 269

isGraph, 269

isLower, 269

isPrint, 269

isPunct, 270

isSpace, 270

isUpper, 270

Left, 270

MainString, 250

Mid, 271

NumberCharacters, 250
Offset, 250

operator!=, 271, 272
operator=, 274

operator==, 274

operator| |, 277

operator>, 275

INDEX

operator>=, 276
operator<, 272
operator<=, 273
Right, 277
SeparatelntoLines, 277
SeparatelntoNonemptyLines, 278
SeparatelntoNonempty Words, 278
Trim, 278
TrimLeft, 278
TrimRight, 278
TSQ, 279
Verify, 279
Classes
all, 67
ArrayOfCStr, 210
ArrayOfDoubles, 213
constructor details, 217
method details, 219
ArrayOflntegers, 226
constructor details, 230
method details, 232
ArrayOfStr, 238
constructor details, 240
method details, 241
CStr, 243
Attribute details, 250
constructor details, 250
method details, 252
Formatter, 330
Attribute details, 332
constructor details, 333
method details, 333
Matrix, 145
constructor details, 150
method details, 151
Matrix3, 165
constructor details, 171
method details, 172
Matrix3X4, 190
constructor details, 193

INDEX

method details, 193
PArray, 197
Attribute details, 200
constructor details, 201
method details, 202
PMatrix, 131
Attribute details, 135
constructor details, 135
method details, 136
PVector, 69
Attribute details, 73
constructor details, 74
method details, 75
Str, 279
Attribute details, 288
constructor details, 288
method details, 292
UnitVector3, 118
constructor details, 122
method details, 123
Vector2, 82
constructor details, 87
method details, 88
Vector3, 98
constructor details, 103
method details, 104
VectorN, 124
constructor details, 127
method details, 128
Class families, 63, 66
Class Formatter
charLen, 333
ConversionSpec, 332
EstimateLengthOfFormattedString, 333
Formatter, 333
~Formatter, 333
intLen, 332
isConversionChar, 334
longLen, 332
shrtLen, 332

345

uintLen, 332

ulonglen, 332

ushrtLen, 332

Class Matrix

AddToElement, 151

ChangeSignOfElement, 151

CopySparseMatrix, 152

CreateArbitraryPositiveDefiniteMatrix, 152

DepermuteMe, 153

DivideElement, 153

GetElement, 153

GetListOfNonzeroColumns, 154

GetMyTranspose, 154

GetNumberCols, 154

GetNumberElements, 154

GetNumberNonzeroColumns, 155

GetNumberNonzeroRows, 155

GetNumberRows, 155

IsPositiveDefinite, 156

IsProperDiagonalDominant, 156

IsRowZero, 156

IsSquare, 157

IsSymmetric, 157

IsUpperTriangular, 157

Matrix, 150, 151

~Matrix, 151

MeCrossVector, 157

MeTimesColumnVector, 158

MeTimesDiagonal TimesMeTransposed, 158

MeTimesMatrix, 159

MeTimesMatrixTimesMeTransposed, 159

MeTimesMatrixTransposed, 159

MeTransposed TimesDiagonal TimesMeA c-
cumulate, 160

MeTransposed TimesDiagonal TimesMeFill,
160, 161

MeTransposed TimesMatrix, 161

MeTransposed TimesMatrixTimesMe, 161

MultiplyElement, 162

operator=, 162

Class Matrix (cntd)

PermuteMe, 162
PermuteMeSymmetric, 163
RowVectorTimesMe, 163
SetElement, 163
SetSubmatrix, 164
SetSubmatrixAsIndentity, 164
VectorCrossMe, 164

Class Matrix3

FindLargest2X2Minor, 172

GetColumn, 173

GetComponents, 173

GetDeterminant, 173

GetElement, 174

Getlnverse, 174

GetMyTranspose, 174

GetNumberCols, 174
GetNumberElements, 175
GetNumberRows, 175

GetReport, 175

GetRow, 175

InsertMelntoMatrix, 176

MakeMeZero, 176

Matrix3, 171, 172

~Matrix3, 172

MeCrossVector, 176
MeEqualsMatrix3TimesMe, 176
MeEqualsMatrix3TimesMeTransposed, 177
MeEqualsMatrix3Transposed TimesMe, 177
MeEqualsMeMinus, 177

MeEqualsMePlus, 177
MeEqualsMeTimesMatrix3, 178
MeEqualsMeTimesMatrix3Transposed, 178
MeEqualsMeTransposed, 178
MeEqualsMeTransposed TimesMatrix3, 178
MeEqualsMinusOther, 178
MeEqualsOther, 179
MelnnerProductMatrix3, 179
MeTimesColumnVector, 179
MeTimesMatrix, 180

INDEX

MeTimesMatrix3, 180

MeTimesMatrix3TimesMeTransposed, 180

MeTimesMatrix3Transposed, 181

MeTimesMatrixTransposed, 181

MeTimesVector, 181, 182

MeTimesVector3, 182

MeTransposedInnerProductMatrix3, 183

MeTransposed TimesDiagonal TimesMatrix3,
183

MeTransposed TimesDiagonal TimesMe, 183

MeTransposed TimesMatrix, 184

MeTransposed TimesMatrix3, 184

MeTransposed TimesMatrix3TimesMe, 184

MeTransposed TimesVector, 185

MeTransposed TimesVector3, 185

operator*, 185, 186

operator+, 186

operator+=, 186

operator-, 186, 187

operator-=, 187

operator/, 187

operator=, 187

ReadFromFile, 187

ReportOrthogonality, 188

RowVectorTimesMe, 188

SaveToFile, 188

SetComponents, 188

SetComponentsFromThreeColumnVectors,
189

SolveHomogeneousSystem, 189

Vector3dTimesMeTimesVector3, 189

VectorCrossMe, 190

Class Matrix3X4

GetElement, 193
GetNumberCols, 194
GetNumberElements, 194
GetNumberRows, 194
Matrix3X4, 193
~Matrix3X4, 193
MeTimesColumnVector, 194

INDEX

Class Matrix3X4 (cntd)
MeTimesMatrix, 195
MeTimesMatrixTransposed, 195
MeTransposed TimesMatrix, 195
RowVectorTimesMe, 196

Class PArray
AppendArray, 203
Appendltem, 203
Copy, 203
Create, 203
GetArray, 204
GetAt, 204
GetFirst, 204
GetLast, 204
GetNonconstant Array, 204
GetSize, 205
Insert, 205
InsertInOrder, 205
IsEmpty, 206
Left, 206
m_pType, 200
m_Size, 200
Mid, 206, 207
operator| |, 207
operator const TYPE *, 202
PArray, 201, 202
~PArray, 202
Prepend, 207, 208
Removeltem, 208
ReverseMe, 208
Right, 208
RotateMe, 209
SetAt, 209
SetAtGrow, 209
SetSize, 210

Class PMatrix
CompareMatrix, 136
element, 135
GetCopyOfElements, 136
GetElement, 136

347

GetElements, 136
GetNonconstantElements, 137
GetNonconstantRow, 137
GetNumberCols, 137
GetNumberElements, 137
GetNumberRows, 137
GetRow, 138
HasLargeElements, 138
InsertDiagonalSubmatrix, 138
IsZero, 138

m_nCols, 135

m_nElements, 135

m_nRows, 135

MakeMeZero, 138
MeEqualsDifferenceBetween, 139
MeEqualsMeMinus, 139
MeEqualsMePlus, 139
MeEqualsMeTransposed, 139
MeEqualsMinusMe, 139
MeEqualsMinusMeMinus, 140
MeEqualsMinusMePlus, 140
MeEqualsMinusOther, 140
MeEqualsNegativeSumOf, 140
MeEqualsOther, 141
MeEqualsSumOf, 141
MelnnerProductMatrix, 141
MeTimesColumnVector, 142
MeTimesMatrix, 142
MeTimesMatrixTransposed, 143
MeTransposedTimesMatrix, 143
operator*=, 143

operator+=, 144

operator-=, 144

operator/=, 144

PMatrix, 135

~PMatrix, 135
ReportMatrix, 144
RowVectorTimesMe, 145

Class PVector

components, 73

Class PVector (cntd)

Create, 75

DotProduct, 75
FindLargestComponent, 75
FindSmallestComponent, 76
GetComponent, 76
GetComponents, 76
GetCopyOfComponents, 76
GetMyLength, 76
GetMyLengthSquared, 77
GetNonconstantComponents, 77
GetNumberComponents, 77
IsZero, 77

m_nComponents, 73
MakeMeZero, 77
MeEqualsDifferenceBetween, 77
MeEqualsMeMinus, 78
MeEqualsMePlus, 78
MeEqualsMeTimesConstant, 78
MeEqualsMeTimesDiagonalMatrix, 78
MeEqualsMinusMe, 79
MeEqualsMinusMeMinus, 79
MeEqualsMinusMePlus, 79
MeEqualsMinusOther, 79
MeEqualsNegativeSumOf, 80
MeEqualsOther, 80
MeEqualsSumOf, 80
MeTimesDiagonalMatrix, 80
operator!=, 81

operator*=, 81

operator+=, 81

operator-=, 81

operator=, 82

operator==, 82

PVector, 74

~PVector, 74

Class Str

AtoF, 292
Atol, 292
CLeft, 293

INDEX

CMid, 293

CompactSpaces, 294

Compare, 294, 295
ConvertMeToNumber, 295

CountLines, 295

CountNonemptyLines, 296
CountNonempty Words, 296
CountOccurrences, 296

Create, 297, 298

CRight, 298

Empty, 298

FillSpaces, 298

Find, 299, 300

FindExclusive, 300
FindMatchingBracket, 301
FindMatchingBracketExclusive, 301
FindMelnFile, 302

FindNextCommand, 302
FindNextCommandExclusive, 303
FindNextLine, 303
FindNextNonalnumDelimitedWord, 304
FindNextSpaceDelimited Word, 304
FindNthCommandWithTitle, 305
FindNthCommandWithTitleExclusive, 305
FindNthLineStartingWithWord, 306
FindPreviousLine, 306
FindPreviousNonalnumDelimited Word, 306
FindPreviousSpaceDelimited Word, 307
FindTextBetween, 307, 308

Format, 308

GetAt, 308

GetBSTR, 309

GetLength, 309

GetString, 309
GetTextBetweenBrackets, 309
GetTextBetweenBracketsExclusive, 310
Insert, 310

isAlnum, 310

isAlpha, 311

isDigit, 311

INDEX

Class Str (cntd)

IsEmpty, 311

isGraph, 311

isLower, 311

isPrint, 312

isPunct, 312

isSpace, 312

isUpper, 312

Justify, 312

Left, 313

LeftJustify, 313

m_pC, 288

m_Size, 288

Mid, 313, 314

operator!=, 314
operator+, 315, 316
operator+=, 316, 317
operator=, 319, 320
operator==, 320, 321
operator| |, 323

operator>, 321, 322
operator>=, 322, 323
operator<, 317, 318
operator<=, 318, 319
operator const char *, 292
ReadFileIntoMe, 323
ReadFileUntilMeFound, 324
ReadMeFromFile, 324
Remove, 324
RemoveBetweenMarks, 325
RemoveComments, 325
ReverseFind, 325, 326
Right, 326
SeparatelntoLines, 326
SeparatelntoNonemptyLines, 327
SeparatelntoNonempty Words, 327
SetAt, 327

SetSize, 328

Str, 288-291

~Str, 291

ToLower, 328
ToUpper, 328
Trim, 328
TrimLeft, 328
TrimRight, 328
TSQ, 329

vCat, 329

Verify, 329
vLength, 329
WriteMeToFile, 330
WriteMyStringToFile, 330

Class UnitVector3

GetVectorAlongMyDirection, 123
operator=, 123
RotateMeAroundAxis, 124
UnitVector3, 122

~UnitVector3, 123

Class Vector2

Angle, 88

Create, 88

DotVector, 88
FindLargestComponent, 88
FindSmallestComponent, 89
GetComponent, 89
GetComponents, 89, 90
GetMyLength, 90
GetMyLengthSquared, 90
GetMyUnit, 90, 91
GetNonconstantComponents, 91
GetNumberComponents, 91
IsZero, 91

MakeMeUnit, 91
MakeMeZero, 91
MeEqualsDifferenceBetween, 92
MeEqualsMeMinus, 92
MeEqualsMePlus, 92
MeEqualsMinusMe, 92
MeEqualsMinusMeMinus, 92
MeEqualsMinusMePlus, 93
MeEqualsMinusOther, 93

349

350 INDEX

Class Vector2 (cntd) GetNumberComponents, 109
MeEqualsNegativeSumOf, 93 GetWDMatrix, 109
MeEqualsOther, 93 IsZero, 109
MeEqualsSumOf, 94 MakeMeUnit, 110
MeTimesConstant, 94 MakeMeZero, 110
operator!=, 94 MeEqualsDifferenceBetween, 110
operator*, 94 MeEqualsMeMinus, 110
operator*=, 95 MeEqualsMePlus, 110
operator+, 95 MeEqualsMeTimesDiagonalMatrix3, 111
operator+=, 95 MeEqualsMinusMe, 111
operator-, 95, 96 MeEqualsMinusMeMinus, 111
operator-=, 96 MeEqualsMinusMePlus, 111
operator/, 96 MeEqualsMinusOther, 112
operator=, 96 MeEqualsNegativeSumOf, 112
operator==, 97 MeEqualsOther, 112
operator|], 97 MeEqualsSumOf, 112
operator const double *, 88 MeTimesConstant, 113
ReadFromFile, 97 MeTimesDiagonalMatrix3, 113
ReportVector, 97 operator!=, 113
RotateMe, 98 operator*®, 113
SaveToFile, 98 operator*=, 114
Vector2, 87 operator+, 114
~Vector2, 87 operator+=, 114

Class Vector3 operator-, 114, 115
Angle, 104 operator-=, 115
AngleDirected, 104 operator/, 115
Create, 105 operator=, 115
CrossVector, 105 operator==, 116
Dot Vector, 106 operator|], 116
DoubleCrossVector, 106 operator const double *, 104
FindLargestComponent, 106 ReadFromFile, 116
FindSmallestComponent, 106 ReportVector, 116
GenerateArbitraryNormal, 107 RotateMeAroundAxis, 117
GetComponent, 107 SaveToFile, 117
GetComponents, 107, 108 SetComponents, 117, 118
GetMyLength, 108 Vector3, 103
GetMyLengthSquared, 108 ~Vector3, 103
GetMyPNormal, 108 Class VectorN
GetMyUnit, 109 GetMyLength, 128

GetNonconstantComponents, 109 GetMyLengthSquared, 128

INDEX

Class VectorN (cntd)
operator*, 128
operator*=, 128
operator+, 129
operator+=, 129
operator-, 129
operator-=, 130
operator/, 130
operator=, 130
VectorN, 127
~VectorN, 127

Clock test, 339

Code, 2
design considerations, 1
efficiency, 4
encapsulated, 38
style, 3

Column vector, 26

COM, 309

Commutative law, 10

Compiler, 30
directives, 31, 56

Compound statements, 43
break, 48
case label, 47
do - while, 47
for, 45
for loop, 45
if - else, 43
switch - case - default, 47
while, 46

Constant
functions, 52
keyword, 52
objects, 52
pointers, 52

Constructors, 35

Container classes, 59

Continuation, 31

Contravariance, 27

Conventions, 335
Coordinate, 337
axis, 337
plane, 337
system, 8, 337
right-handed, 337
transformations, 339
Corkscrew rule, 339
Covariance, 27
Cross product, 17
C Standard Library
printf, 144
CStr
Attribute details, 250
class, 243

constructor details, 250

method details, 252
C string, 42

Data encapsulation, 30
Declarations, 55

forward, 58
Definitions, 55, 335
Dereferencing, 37
Destructors, 35
Dimension, 7
Dimensionless, 7
Direction, 7
Direction cosines, 16
Dot product, 15

Encapsulated code, 38
Equation, 63

351

Equations, algorithms and programs, 63

Escape sequence, 41
Executable, 30

Families, 66

Families of classes, 48

Family of Classes
Array, 197

352

Matrix, 131
String, 243
Vector, 69
File
header, 55
implementation, 55
include, 55
source, 59
Files
circular inclusions, 57
multiple inclusions, 57
Formatter
Attribute details, 332
constructor details, 333
method details, 333
Formatter class, 330
Fortran, 38
Forward declarations, 58
Function
arguments, 38
body, 40
call, 38
constant, 52
fully qualified name, 57
inline, 59
interface, 38
method, 39
multiple-return, 39
name, 38
overloaded, 53
prototype, 56
return, 38
return by argument, 39
see also Arguments, 38
single-return, 39
virtual, 50
Functions, 38

Graphic representation of vectors, 8

has a, 30

INDEX

Header file, 55

Implementation file, 55

Include file, 55

Indirection, 37

Inheritance, 30, 31
multiple, 50

Inline functions, 59

Instruction, 64

Inverse matrix, 25

is a, 30

Java, 38, 42
Kronecker delta, 22

Left-handed system, 338
Length, 7

Line continuation, 31

Line splicing, 31

Linker, 30

Lower triangular matrix, 25
Ivalue, 35

Machine independence, 30
Magnitude, 7
Matrices, 21
Matrix
antisymmetric, 24
band, 25
basics, 21
block, 25
class, 145
classes, 131
column, 21
conformable, 23
constructor details, 150
diagonal, 21
family of classes, 131
identity, 22
inverse, 25
line, 21

INDEX

Matrix (cntd)
lower triangle, 22
lower triangular, 25
method details, 151
operations, 22
order, 21
orthogonal, 25
partition, 25
permutation, 25
rank, 25
row, 21
size, 21
skew-symmetric, 24
sparse, 25
square, 21
submatrix, 25
symmetric, 24
transpose, 24
unit, 22
upper triangle, 21
upper triangular, 25
zero, 22
Matrix3
class, 165
constructor details, 171
method details, 172
Matrix3X4
class, 190
constructor details, 193
method details, 193
Method, 39
static, 39
Method design, 64
Methods, 31

Multidimensional vectors, 19

Multiple inheritance, 50

Names and types, 32
Naming style, 64
Null vector, 7

Number of dimensions, 8

Object-oriented language, 30
Objectives and roadmap, 1
Object oriented programming, 1

Objects, 29
attributes, 31
behavior, 30, 31
constant, 52
creating, 53

methods, 31
properties, 30
type, 31
using, 53

Operating system independence, 30
Operations with matrices, 22

Operator

address, 37

dereferencing, 37

indirection, 37

scope resolution, 57
Operators, 4, 33

delete, 54

new, 54

precedence, 34
Orthogonal matrix, 25
Orthonormal basis, 12
Overloading functions, 53

p-normal, 108
Parallelogram law, 10
Parameterized classes, 59
container classes, 59
example, 60
inlining functions, 59

Parametric polymorphism, 59

PArray
Attribute details, 200
class, 197
constructor details, 201
method details, 202

353

354

Parsing, 280
Partition, 25
Permissions, 40
Permutation matrix, 25
Physical unit, 7
PMatrix
Attribute details, 135
class, 131
constructor details, 135
method details, 136
Pointer, 36
proper type, 36
target type, 36
to a pointer, 42
to function, 40
Pointer arithmetic, 42
Pointers, 36
Polymorphism, 30, 48
parametric, 59
Precompiler, 31
Primitive types, 33
printf, 144
Program, 63

Programming in C++, 29

conclusion, 62
parameterized classes, 59
Proper type, 36
Prototype
class, 56
function, 56
PVector
Attribute details, 73
class, 69
constructor details, 74
method details, 75

Reference, 37
proper type, 37
target type, 37

References, 36

INDEX

Reference system, 337
Right-handed system, 338
Root class, 50

Row vector, 26

rvalue, 35

Scalar, 7

magnitue, 7

value, 7
Scalars and Vectors, 7

basics, 7
Scope resolution operator, 57
Separating declarations and definitions,

55

Services, 30

user, 30
Skew-symmetric matrix, 24
Source file, 55
Space, 8
Sparse matrix, 25
Specialized matrices, 24
Square matrix, 21
Standard C Library, 38
Statement

break, 48

case, 47

compouind, 43

continue, 48

default, 47

switch, 47
Str

Attribute details, 288

class, 279

constructor details, 288

method details, 292
String

classes, 243

family of classes, 243
Submatrix, 25
Substring index, 244

INDEX

Symmetric matrix, 24

Target type, 36
Template, 59
Terminology, 335

Theorem, 64
Transpose matrix, 24
Type

primitive, 33
user defined, 33

Unit matrix, 22

Unit vector, 11

UnitVector3
class, 118

constructor details, 122

method details, 123

Upper triangular matrix, 25

Value, 7

Vector, 7
addition, 10
application point, 8
as a matrix, 26
classes, 69
column, 26
commutative law, 10
components, 12
coordinate system, 8
cross product, 17
direction, 7
dot product, 15
family of classes, 69

graphic representation, 8

head, 8

left-handed system, 338

length, 7
magnitude, 7
multidimensional, 19
null, 7

operations, 9

origin, 8
parallelogram law, 10
point, 8

projection, 12
reference system, 8

right-handed system, 338

row, 26

scalar product, 15
tail, 8

unit, 11

vector product, 17
zero, 7

Vector2
class, 82

constructor details, 87

method details, 88
Vector3
class, 98

constructor details, 103

method details, 104

Vector and matrix code, 63

VectorN
class, 124

constructor details, 127

method details, 128
Vectors as matrices, 26
Virtual functions, 50
Visibility, 40

Writing classes, 31

Zero vector, 7

355

	Introduction
	Objectives and Road Map
	Code Design Considerations
	Object Oriented Programming
	Code
	Style
	Efficiency
	Operators

	Scalars and Vectors
	Basics
	The graphic representation of vectors
	Operations with vectors
	Unit vectors
	Components
	Vector operations using components
	Dot product
	Cross product
	Multidimensional vectors
	Row vectors and column vectors

	Matrices
	Basics
	Operations with matrices
	Specialized matrices
	Vectors as matrices

	Basic C++ Programming
	Introduction
	C++ Essentials
	Writing Classes
	Names and Types
	Operators
	Constructors and Destructors
	Pointers and References
	Functions
	Visibility
	Arrays
	Pointer Arithmetic
	Compound Statements

	Polymorphism in C++
	Families of classes
	Virtual Functions
	Constant Objects, Functions and Pointers
	Overloading Functions
	Creating and Using Objects
	Operators new and delete
	Separating Declarations and Definitions
	Parameterized Classes

	Conclusion

	Vector and Matrix Code
	The Families of Classes
	Equations, Algorithms and Programs
	Method Design and Naming Style
	All Families
	All Classes

	The Vector Family of Classes
	All Vector Classes
	Class PVector
	PVector Attribute Detail
	PVector Constructor Detail
	PVector Method Detail

	Class Vector2
	Vector2 Constructor Detail
	Vector2 Method Detail

	Class Vector3
	Vector3 Constructor Detail
	Vector3 Method Detail

	Class UnitVector3
	UnitVector3 Constructor Detail
	UnitVector3 Method Detail

	Class VectorN
	VectorN Constructor Detail
	VectorN Method Detail

	The Matrix Family of Classes
	All Matrix Classes
	Class PMatrix
	PMatrix Attribute Detail
	PMatrix Constructor Detail
	PMatrix Method Detail

	Class Matrix
	Matrix Constructor Detail
	Matrix Method Detail

	Class Matrix3
	Matrix3 Constructor Detail
	Matrix3 Method Detail

	Class Matrix3X4
	Matrix3X4 Constructor Detail
	Matrix3X4 Method Detail

	The Array Family of Classes
	All Array Classes
	Class PArray
	PArray Attribute Detail
	PArray Constructor Detail
	PArray Method Detail

	Class ArrayOfCStr
	ArrayOfCStr Constructor Detail
	ArrayOfCStr Method Detail

	Class ArrayOfDoubles
	ArrayOfDoubles Constructor Detail
	ArrayOfDoubles Method Detail

	Class ArrayOfIntegers
	ArrayOfIntegers Constructor Detail
	ArrayOfIntegers Method Detail

	Class ArrayOfStr
	ArrayOfStr Constructor Detail
	ArrayOfStr Method Detail

	The String Family of Classes
	All String Classes
	Class CStr
	CStr Attribute Detail
	CStr Constructor Detail
	CStr Method Detail

	Class Str
	Str Attribute Detail
	Str Constructor Detail
	Str Method Detail

	Class Formatter
	Formatter Attribute Detail
	Formatter Constructor Detail
	Formatter Method Detail

	Terms, Conventions and Definitions
	Terminology
	Cabinet Drawing
	Coordinate Systems
	Right-handed and left-handed systems
	Coordinate transformations

